MATH 512, FALL 14 COMBINATORIAL SET THEORY WEEK 1

Let κ be a regular (i.e. $cf(\kappa) = \kappa$) uncountable cardinal.

Definition 1. A set $C \subset \kappa$ is closed and unbounded (club) in κ if

- for all $\alpha < \kappa$, there is $\beta \in C \setminus \alpha$, and
- for all increasing sequences $\langle \alpha_i \mid i < \tau \rangle$ of ordinals in C for some $\tau < \kappa$, $\sup_{i < \tau} \alpha_i \in C$.

Some examples: $\kappa \setminus \alpha$, for all $\alpha < \kappa$; the set of limit ordinals less than κ .

Lemma 2. Suppose that C, D are clubs in κ . Then so is $C \cap D$.

Proof. To show closure, suppose that $\tau < \kappa$ and $\langle \alpha_i | i < \tau \rangle$ is an increasing sequence of ordinals in $C \cap D$, and let $\alpha = \sup_{\xi < \tau} \alpha_{\xi}$. Since C is closed, we have that $\alpha \in C$. Since D is closed, we have that $\alpha \in D$.

To show unboundedness, fix $\alpha < \kappa$. Let $\alpha_0 > \alpha$ be a point in C. Then let $\beta_0 > \alpha_0$ be a point in D. Continue inductively, to build increasing sequences $\langle \alpha_n \mid n < \omega \rangle$ of points in C and $\langle \beta_n \mid n < \omega \rangle$ of points in D, such that for all $n, \alpha_n < \beta_n < \alpha_{n+1}$. Then $\beta := \sup_n \alpha_n = \sup_n \beta_n \in C \cap D$, and $\beta > \alpha$. \Box

Definition 3. A set $S \subset \kappa$ is stationary if for all clubs $C, S \cap C \neq \emptyset$

Some examples: every club set, $E_{\omega}^{\kappa} := \{ \alpha < \kappa \mid cf(\alpha) = \omega \}$. Also note that if S is stationary and C is a club, then $S \cap C$ is stationary.

Definition 4. Let $\langle A_{\xi} | \xi < \kappa \rangle$ be subsets of κ . The diagonal intersection is defined to be $\triangle_{\xi < \kappa} A_{\xi} := \{\beta < \kappa \mid \beta \in \bigcap_{\xi < \beta} A_{\xi}\}$. A filter is called **normal** if it is closed under diagonal intersections.

Proposition 5.

- (1) If $\langle C_{\xi} | \xi < \tau \rangle$ are clubs in κ for some $\tau < \kappa$, then $\bigcap_{\xi < \tau} C_{\xi}$ is also a club.
- (2) If $\langle C_{\xi} | \xi < \kappa \rangle$ are clubs in κ , then $\triangle_{\xi < \tau} C_{\xi}$ is a club.

The **club filter** on κ is the collection of all subsets of κ containing a club. If follows by the above that the club filter is a normal κ -complete filter on κ , and it contains all complements of bounded sets.

Theorem 6. (Fodor) Suppose that $S \subset \kappa$ is stationary and $f : S \to \kappa$ is a **regressive** function, i.e. $f(\alpha) < \alpha$ for all $\alpha \in S$. Then there is a stationary $T \subset S$, such that f is constant on T.

Proof. Otherwise, for all $\gamma < \kappa$, $f^{-1}(\gamma)$ is nonstationary, i.e. there is a club C_{γ} with $C_{\gamma} \cap f^{-1}(\gamma) = \emptyset$. Let $C = \triangle_{\gamma < \kappa} C_{\gamma}$, and let $\alpha \in C \cap S$. Set

 $\gamma := f(\alpha)$. Since f is regressive, $\gamma < \alpha$, and so by the definition of diagonal intersection, $\alpha \in C_{\gamma}$. But $\alpha \in f^{-1}(\gamma)$. Contradiction.

The conclusion of this theorem is actually a necessary and sufficient condition for normality. An application of Fodor's theorem is the following fact:

Fact (Solovay): Every stationary subset S of κ can be partitioned into κ many disjoint stationary subsets. (for the proof, see Chapter 8 of Jech)

Definition 7. A cardinal κ is inaccessible if it is regular and strong limit (*i.e.* $\tau < \kappa \rightarrow 2^{\tau} < \kappa$).

Proposition 8. Suppose κ is inaccessible. Then the set of cardinals below κ is club.

Definition 9. An inaccessible cardinal κ is Mahlo if the set of regular cardinals below κ is stationary.

So far we have defined clubs and stationary subsets of a cardinal. For an ordinal $\alpha, c \subset \alpha$ is a club in α is it is closed and unbounded in α , and $s \subset \alpha$ is stationary in α is it meets every club in α .

For a set $B \subset \beta$, $\lim(B)$ will denote the limit points of B, i.e. $\lim(B) :=$ $\{\alpha < \beta \mid B \cap \alpha \text{ is unbounded}\}$. Note that if B is unbounded, then $\lim(B)$ is a club. Also, for any club C, $\lim(C) \subset C$.

Definition 10. Let $S \subset \kappa$ be stationary. S reflects if for some $\alpha < \kappa$, $S \cap \alpha$ is stationary in α .

Definition 11. For a stationary set T, Refl(T) denotes the statement that every stationary subset of T reflects.

For example, for any uncountable regular κ , E_{ω}^{κ} reflects.

Proposition 12. Let κ be any cardinal (possibly singular), and let T be a stationary subset of $E_{\kappa}^{\kappa^+}$. Then T does not reflect.

Proof. Let $\alpha < \kappa^+$ be any point. Let $C \subset \alpha$ be club in α with o.t.(C) = $cf(\alpha) \leq \kappa$. Then $\lim(C)$ is a club subset of α , disjoint from T. \square

Definition 13. \Box_{κ} asserts the existence of a sequence $\langle C_{\alpha} \mid \alpha < \kappa^+ \rangle$, such that for every α ,

- C_α is club in α with o.t.(C_α) ≤ κ;
 if β ∈ lim(C_α), then C_α ∩ β = C_β.

Lemma 14. \Box_{κ} implies $\neg Refl(S)$ for every stationary $S \subset \kappa^+$.

Proof. Suppose that $\langle C_{\alpha} \mid \alpha < \kappa^+ \rangle$ is a square sequence and S is a stationary subset of κ^+ . Let $F(\alpha) := o.t.(C_{\alpha})$. By Fodor, there is a stationary subset $T \subset S$, such that F is constant on T. I.e. for some δ , for all $\alpha \in T$, $o.t.(C_{\alpha}) = \delta$. We claim that T does not reflect. For otherwise, if $T \cap \alpha$ is

2

Next we give some weakenings of square:

Definition 15. $\Box_{\kappa,\lambda}$ asserts the existence of a sequence $\langle \mathcal{C}_{\alpha} \mid \alpha < \kappa^+ \rangle$, such that for every α ,

- $1 \leq |\mathcal{C}_{\alpha}| \leq \lambda$,
- for every α , for every $C \in \mathcal{C}_{\alpha}$, C is club in α with $o.t.(C) \leq \kappa$;
- for every α , for every $C \in \mathcal{C}_{\alpha}$, for every $\beta \in \lim(C)$, we have $C \cap \beta \in \mathcal{C}_{\beta}$.

The principle weak square is $\Box_{\kappa}^* := \Box_{\kappa,\kappa}$. We have that for any $\lambda < \kappa$, $\Box_{\kappa} \to \Box_{\kappa,\lambda} \to \Box_{\kappa}^*$.

Lemma 16. Suppose that $\kappa^{<\kappa} = \kappa$. Then \Box_{κ}^* holds.

Proof. For every limit $\alpha < \kappa^+$ with $cf(\alpha) < \kappa$, let $\mathcal{C}_{\alpha} := \{C \subset \alpha \mid C \text{ is a club, } |C| < \kappa\}$, i.e. all club subsets of α of size less than κ . Since $\kappa^{<\kappa} = \kappa$, we have that $|\mathcal{C}_{\alpha}| = \kappa$.

If κ is regular, for every limit $\alpha < \kappa^+$ with $cf(\alpha) = \kappa$, let C_{α} be any club in α of order type κ . Set $C_{\alpha} = \{C_{\alpha}\}$.

Suppose that $C \in \mathcal{C}_{\alpha}$ and $\beta \in \lim(C)$. Then since $|C| \leq \kappa$, we have that $\operatorname{cf}(\beta) < \kappa$ and $C \cap \beta$ is a club subset of β of size less than κ . So, by definition, $C \cap \beta \in \mathcal{C}_{\beta}$.

Note that the above implies that weak square holds for all inaccessible κ . Also, under GCH, weak square will hold for every regular κ . So, we will be most interested in \Box_{κ}^* when κ is singular.

In general square principles are a "incompactness" type properties: a property that a structure lacks, but all of its substructures of smaller cardinality have. This is examplified in the following lemma:

Lemma 17. Suppose that $\langle C_{\alpha} \mid \alpha < \kappa^+ \rangle$ is a $\Box_{\kappa,\lambda}$ sequence, for some $1 \leq \lambda \leq \kappa$. Then there is no club $C \subset \kappa^+$, such that for all $\alpha \in \lim(C)$, $C \cap \alpha \in C_{\alpha}$.

Proof. If C is a club in κ^+ , let $\alpha \in \lim(C)$ be such that $o.t.(C \cap \alpha) > \kappa$. We can always find such an α , since $o.t.(C) = \kappa^+$. But for every $E \in \mathcal{C}_{\alpha}$, $o.t.(E) \leq \kappa$, so $C \cap \alpha \notin \mathcal{C}_{\alpha}$.

Definition 18. A tree (T, <) is a partially ordered set, such that for every $x \in T$, the set of predecessors of x, $pred(x) := \{y \in T \mid y < x\}$ is well ordered by <. We set:

• for $x \in T$, level(x) := o.t.(pred(x)),

WEEK 1

MATH 512, FALL 14 COMBINATORIAL SET THEORY WEEK 1

- the height of the tree, $ht(T) := \sup\{level(x) + 1 \mid x \in T\},\$
- for $\alpha < ht(T)$, the α -th level of T is $T_{\alpha} := \{x \in T \mid level(x) = \alpha\}$.

We also say that $b \subset T$ is a **branch**, if b is a maximal linearly ordered subset of T.

Note that if b is a branch, then for every level α , $|b \cap T_{\alpha}| \leq 1$, and if $\beta < \alpha$, then by maximality $b \cap T_{\alpha} \neq \emptyset$ implies that $b \cap T_{\beta} \neq \emptyset$. We say that b is unbounded (or cofinal) if for all $\alpha < ht(T)$, $b \cap T_{\alpha} \neq \emptyset$.

Definition 19. The tree property holds at κ , for a regular cardinal κ , if every tree of height κ and levels of size less than κ , has an unbounded branch. We denote this by TP_{κ} .

Below we list some facts about the tree property:

(1) (König) TP holds at ω .

4

- (2) (Aronszajn) TP fails at ω_1 .
- (3) TP can hold at ω_2 (and above), assuming some large cardinals.
- (4) \square_{κ}^{*} implies that the tree property fails at κ^{+} .

Definition 20. An inaccessible cardinal κ is weakly compact if it satisfies the tree property.

There are several equivalent definitions of a weakly compact. We list two of them for completeness:

(1) κ is weakly compact iff κ is inaccessible and $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem.

Here the language $\mathcal{L}_{\kappa,\omega}$ contains conjunctions and disjunctions of size less than κ . It satisfies the weak Compactness Theorem if for every set of sentences $\Sigma \subset \mathcal{L}_{\kappa,\omega}$ with $|\Sigma| \leq \kappa$, if every $S \subset \Sigma$ with $|S| < \kappa$ has a model, then Σ has a model.

(2) κ is weakly compact iff every function $F : [\kappa]^2 \to 2$, there is a set $H \subset \kappa$ of size κ such that F is constant on H. Such a set is called *homogeneous*.

It turns out that TP at ω_2 is equiconsistent with the existence of a weakly compact cardinal. More precisely:

Theorem 21. (Mitchell) If κ is weakly compact, then there is a forcing extension, in which κ is \aleph_2 , and the tree property holds at \aleph_2 .

Theorem 22. (Silver) \aleph_2 has the tree property, then \aleph_2 is weakly compact in L.

Later in the course we will go over the proof of Mitchell's theorem. hat measurable cardinals are weakly compact.